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Abstract

In the immersed interface method, boundaries are represented as singular force in the Navier–Stokes equations, which
enters a numerical scheme as jump conditions. Recently, we systematically derived all the necessary spatial and temporal
jump conditions for simulating incompressible viscous flows subject to moving boundaries in 3D with second-order spatial
and temporal accuracy near the boundaries [Sheng Xu, Z. Jane Wang, Systematic derivation of jump conditions for the
immersed interface method in three-dimensional flow simulation, SIAM J. Sci. Comput., 2006, in press]. In this paper we
implement the immersed interface method to incorporate these jump conditions in a 2D numerical scheme. We study the
accuracy, efficiency and robustness of our method by simulating Taylor–Couette flow, flow induced by a relaxing balloon,
flow past single and multiple cylinders, and flow around a flapping wing. Our results show that: (1) our code has second-
order accuracy in the infinity norm for both the velocity and the pressure; (2) the addition of an object introduces relatively
insignificant computational cost; (3) the method is equally effective in computing flow subject to boundaries with pre-
scribed force or boundaries with prescribed motion.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

It is important to accurately and efficiently resolve moving boundaries and their effects on fluids in numer-
ical simulations of fluid–structure interactions. Body-fitted grid methods, which employ structured or unstruc-
tured body-fitted grids, are designed to resolve boundaries and their effects with high-order accuracy, but it is
computationally costly to update grids in moving boundary problems. Various Cartesian grid methods have
been developed to avoid the grid regeneration. They allow for fast flow solvers and have the advantages of
simplicity and efficiency. One class of Cartesian grid methods are suitable for solving flows with moving
boundaries undergoing prescribed motion. Examples include the virtual/immersed boundary method
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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[9,28,6,14,29], the sharp interface method [34,39], the ghost fluid method [7,32,10], PHYSALIS [25,31], Cal-
houn’s method [3] and Russell and Wang’s method [27]. Another class of Cartesian grid methods are more
suitable to solve flows with boundaries moved and deformed by driving force, most notably, Peskin’s
immersed boundary method [21,22] and the more recent immersed interface method [17–19,16]. Our goal
of this paper is to develop the immersed interface method for simulating flow with both types of moving
boundaries in an accurate and efficient way.

In his simulation of blood flow in the heart, Peskin introduced the immersed boundary method [21,22]. In
this method, the boundary of an immersed object is treated as a set of Lagrangian fluid particles. The config-
uration of these Lagrangian fluid particles determines a force distribution in the fluid to represent the effect of
the object. The force distribution is determined by a prescribed constitutive law of material, and it appears in
the form of the Dirac delta function. In this sense, Peskin’s immersed boundary method is a mathematical
formulation, in which singular force is added to the Navier–Stokes equations for modeling immersed bound-
aries. This formulation naturally couples a fluid with multiple moving objects, and can be computed in an effi-
cient way. A rigorous derivation of the formulation from the principle of least action can be found in [24].

The numerical implementation of the immersed boundary method employs a fixed Cartesian grid for a fluid
and a Lagrangian grid for an immersed boundary. The communication between the fluid and the immersed
boundary is achieved through the spreading of the singular force from the Lagrangian grid to the Cartesian
grid and the interpolation of the velocity from the Cartesian grid to the Lagrangian grid. A discrete Dirac
delta function is used to spread the singular force and interpolate the velocity. There are multiple choices
of the discrete Dirac delta function, which is constructed to preserve various moments. The use of the discrete
Dirac delta function removes the singularity in the governing equations and therefore the discontinuities of the
flow field. Thus, standard discretization schemes can be adopted without modifications. To confine the thick-
ness of the interface between a fluid and an object, the discrete Dirac delta function has a narrow support, and
is dependent on the grid size.

Since the immersed boundary method was introduced in 1972 [21], it has been widely used in the simulation
of fluid–structure interactions, especially in biological fluid dynamics. Examples can be found in [24]. Despite
its efficiency and robustness, the initial implementations of the method had the following shortcomings. First,
it was only first-order accurate in space; Second, there was a systematic tendency for a closed immersed
boundary to slowly lose volume as though the fluid were leaking out; Third, a solution which is piecewise
smooth across an immersed boundary was smeared out.

In the past 30 years, there have been various research efforts to analyze and improve the immersed bound-
ary method. Beyer and LeVeque [1] examined the accuracy of the method for the one-dimensional diffusion
equation, and found that additional terms for the discrete approximation of the Dirac delta function are some-
times necessary in order to achieve second-order accuracy, but it is unclear how to maintain the second-order
accuracy for flow simulation in higher dimensions. A formally second-order immersed boundary method was
proposed by Lai and Peskin [15], but the second-order accuracy is achieved only if the Dirac delta function is
approximated by a grid-independent fixed smooth function. In practice, it is still first-order accurate. Realizing
that the projection of a discrete Dirac delta function onto a divergence-free space may be computed analyt-
ically, Cortez and Minion [4] devised the blob projection immersed boundary method, which displayed for-
mally fourth-order convergence rates of their background flow solver. However, the analytical form of the
projection depends on the velocity boundary conditions imposed on the computational domain. Since the
pressure was not reported, it is also unclear how accurately the pressure can be recovered.

Analyzing the leakage problem in the immersed boundary method, Peskin and Printz [23] found that the
volume loss enclosed by an immersed boundary is caused by the violation of the divergence-free condition
at Lagrangian fluid particles. They ruled out the obvious explanation that fluid escapes between discrete
Lagrangian fluid particles which define the immersed boundary, and introduced a recipe for the construction
of a finite-difference divergence operator to achieve better volume conservation. The blob projection immersed
boundary method by Cortez and Minion [4] also achieved good volume conservation.

Other analysis and improvement of the immersed boundary method include the stability analysis by Tu and
Peskin [33] and Stockie and Wetton [30], the adaptive version by Roma et al. [26], and the inclusion of bound-
ary mass by Zhu and Peskin [40]. However, despite recent improvements, the method still suffers from some
shortcomings, in particular first-order accuracy in general.
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Motivated by the goal to eventually obtain second-order accuracy in Peskin’s immersed boundary method,
LeVeque and Li [17,18] developed the immersed interface method. The key idea of the immersed interface
method, which is also the main difference from the immersed boundary method, is to incorporate the jump
conditions caused by the Dirac delta function into finite difference schemes. The approximation of the Dirac
delta function by a smooth function is therefore avoided. The immersed interface method was originally
proposed for elliptic equations [17] and Stokes equations [18]. Later, it was extended to one-dimensional non-
linear parabolic equations [36], Poisson equations with Neumann boundary conditions [37,8], and the two-
dimensional incompressible Navier–Stokes equations [19,16].

For fluid dynamics problems, the immersed interface method is based on the same mathematical formula-
tion as Peskin’s immersed boundary method, but the coupling between a fluid and an object is now handled by
incorporating jump conditions. If necessary jump conditions are all known, the immersed interface method
can achieve second-order or even higher-order accuracy. The sharpness of an interface computed by the
method does not depend on grid resolutions. Furthermore, the method shows very good conservation of
the mass enclosed by a no-penetration boundary. Thus, the immersed interface method shares the advantages
of the immersed boundary method with the same mathematical formulation, while overcoming some of its
shortcomings by eliminating the use of discrete Dirac delta functions.

The applicability of the immersed interface method depends on whether the necessary jump conditions
are known. Recently, we systematically derived the jump conditions of all first-, second- and third-order
spatial derivatives of the velocity and the pressure as well as first- and second-order temporal derivatives
of the velocity for the 3D incompressible Navier–Stokes equations subject to singular force [38]. Using
these jump conditions, the immersed interface method can be applied to the simulation of 3D incompress-
ible viscous flows with local first- or second-order spatial and temporal discretization accuracy. In this
paper, we obtain the jump conditions in 2D from our 3D results [38] by taking one direction in 3D as uni-
form, and implement the immersed interface method to simulate the interaction of a fluid with moving
boundaries. The method we develop in this paper can simulate two classes of flow problems, one with
boundaries moved and deformed by driving force and the other with boundaries prescribed with known
motion.

Li and Lai [19] and Lee and LeVeque [16] have implemented the immersed interface method for some two-
dimensional flows and achieved second-order spatial accuracy in their simulations. The current paper differs
from their work in the following aspects: (1) we derive the jump conditions in this paper from our three-dimen-
sional theoretical results [38], so the numerical tests in the current paper serve in part to verify our previous
theoretical derivation; (2) in addition to more spatial jump conditions, we also derive temporal jump condi-
tions and examine their effect on temporal integration; (3) we simulate flow problems with boundaries moved
and deformed by driving force and with boundaries in prescribed motion, and investigate the spatial and tem-
poral convergence and accuracy of our method against known analytical flow solutions and canonical flow
examples; (4) we investigate the efficiency and robustness of the method to simulate flow with multiple moving
boundaries.

This paper is written with sufficient details so that an interested reader can program and test the method. In
Section 2, we present the mathematical formulation of governing equations in the immersed interface method.
In Section 3, we describe the immersed interface method and give finite difference schemes with jump condi-
tions incorporated. In Section 4, we present the necessary jump conditions for achieving first-order local spa-
tial and temporal discretization accuracy in 2D simulation. Those jump conditions are functions of the
singular force. In Section 5, we discuss the construction of the singular force. In Section 6, we implement
the MAC scheme [11] as a basic flow solver and also give interpolation schemes and fluid force calculations.
In Section 7, we provide numerical tests to examine the accuracy, efficiency and robustness of the immersed
interface method. Section 8 is conclusions.

2. Governing equations subject to singular force

Both the immersed interface method and the immersed boundary method model objects as singular force
in the Navier–Stokes equations. The nondimensional 2D Navier–Stokes equations subject to singular force
are
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Fig. 1. Geometric description of an object surface.
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where t is time, ~v :¼ ðu; vÞ is the velocity, p is the pressure, Re is the Reynolds number, M is the number of
objects, and ~F l is the singular force from object l. Taking the divergence of the momentum equation (1) gives
the equation for pressure p as
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where D ¼ r �~v is the divergence of the velocity and~x :¼ ðx; yÞ is the Cartesian coordinates. We keep terms
with divergence D in Eq. (3) to enforce the divergence-free condition in the MAC scheme, which we will
use to solve Eqs. (1) and (3).

Since our numerical treatment of each object is the same, we omit subscript l associated with object l in later
presentation. We consider the situation in which the singular force is applied to the closed smooth boundary of
object l. Referring to Fig. 1, the closed boundary is a closed curve in 2D, and we denote it by C and its coor-
dinates by ~X :¼ ðX ; Y Þ. We parametrize curve C at a reference time by nondimensionalized Lagrangian param-
eter a. The singular force ~F can be expressed by
~F ðx; y; tÞ ¼
Z

C

~f ða; tÞdðx� X ða; tÞÞdðy � Y ða; tÞÞda; ð4Þ
where ~f :¼ ðfx; fyÞ is the nondimensional singular force density, and d(Æ) is the nondimensional Dirac delta
function. We assume fx and fy are smooth functions of a and t.

3. Finite differences with jump contributions

Because of the singular force applied on curve C, a flow field governed by Eqs. (1) and (2) is generally not
smooth across the curve. The immersed interface method differs from the immersed boundary method in its
handling of the force singularity. Instead of approximating the Dirac delta function by smooth functions, the
immersed interface method modifies the standard discretization schemes to include the discontinuities of the
flow field. The modification is based on the generalized Taylor expansion.

Lemma 1 (Generalized Taylor expansion). Assume function g(z) has discontinuity points of the first kind at

z1, z2, . . . , zm in (z0, zm+1), z0 < z1 < z2 < . . . < zm < zm+1, and gðzÞ 2 C1ðz0; z1Þ [ ðz1; z2Þ [ � � � [ ðzm; zmþ1Þ. g(z)

can be either continuous or discontinuous at z0 and zm+1. Let ½gðnÞðzlÞ� ¼ gðnÞðzþl Þ � gðnÞðz�l Þðn ¼
1; 2; . . . ; l ¼ 1; 2; . . . ;mÞ. Then
gðz�mþ1Þ ¼
X1
n¼0

gðnÞðzþ0 Þ
n!

ðzmþ1 � z0Þn þ
Xm

l¼1

X1
n¼0

½gðnÞðzlÞ�
n!

ðzmþ1 � zlÞn. ð5Þ
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The proof of the above lemma was presented in [38].

We apply the above lemma to construct central finite difference schemes where the discontinuity may occur
at most once between two adjacent grid points.

Lemma 2 (Generalized central finite differences). Let xi+1 � xi = xi � xi�1 = h > 0 and xi�1 < n < xi 6

g < xi+1. Suppose u(x) is infinitely smooth except at discontinuity points of the first kind, n and g. u(x) can be

either continuous or discontinuous at xi+1 and xi�1. Then
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ð7Þ
Other finite difference schemes with different orders can also be constructed based on Lemma 1, but the avail-
ability of jump conditions sets an upper-limit on the order of accuracy, as stated in the following proposition.

Proposition 1. The highest order of a finite difference scheme for u(n)(x) with a stencil containing a discontinuity
point f is m � n + 1, where m takes a maximum number such that jump conditions [u(l)(f)] (l = 0, 1, 2, . . . , m) are

all known.

The highest order of spatial derivatives in momentum equation (1) and pressure equation (3) is 2. Accord-
ing to Proposition 1, to discretize these derivatives with first-order accuracy at grid points near an object
boundary, the jump conditions of the velocity, the pressure and their first-order and second-order spatial
derivatives are needed. To achieve second-order accuracy, the jump conditions of their third-order spatial
derivatives are also needed.

If an object is moving, the temporal derivatives of the velocity at a grid point may have jumps whenever
the object boundary crosses that grid point. Suppose a boundary passes a grid point at time t1, t2, . . . , tm

between time t0 and tm+1. Then the relation for velocity~v at the grid point between time t0 and tm+1 is given
by
~vðtmþ1Þ ¼
X1
n¼0

on~vðt0Þ
otn

ðtmþ1 � t0Þn

n!
þ
Xm

l¼1

X1
n¼0

on~vðtlÞ
ot
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ðtmþ1 � tlÞn

n!
; ð8Þ
where [[Æ]] denotes a temporal jump at time t as ½½��� :¼ ð�Þtþ � ð�Þt� . Eq. (8) follows directly from Lemma 1. The
highest order of temporal derivatives in momentum equation (1) is 1. According to Proposition 1, to discretize
these derivatives with first-order accuracy at grid points crossed by an object boundary, the jump conditions of
the first-order temporal derivatives of the velocity are needed. To achieve second-order accuracy, the jump
conditions of second-order temporal derivatives of the velocity are needed as well.
4. Spatial and temporal jump conditions

In this section, we give the necessary jump conditions for achieving first-order local spatial and temporal
discretization accuracy in the 2D Navier–Stokes equations. They are derived from the 3D results in [38] by
taking one direction in 3D as uniform.

For curve C in Fig. 1, unit tangential vector~s and unit normal vector ~n are defined as
~s :¼ ðsx; syÞ ¼
1

J
oX
oa

;
oY
oa

� �
; ~n :¼ ðnx; nyÞ ¼ ðsy ;�sxÞ;
where J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðoX

oa Þ
2 þ ðoY

oa Þ
2

q
. As before, we use [Æ] to denote a spatial jump, i.e. ½�� :¼ ð�ÞCþ � ð�ÞC� , where C+ is at

the side of C in the direction of normal~n, and C� is at the other side of C. In the Cartesian coordinate system,

tangential force density fs and normal force density fn are defined as
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fs ¼
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.

4.1. Spatial jump conditions

The spatial jump conditions used for 2D simulation are
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Terms with the form of [a Æ b] appear here in rp3 and also later. Note that [a Æ b] 6¼ [a] Æ [b]. The correct calcu-
lation of [a Æ b] is
½a � b� ¼ a� � ½b� þ b� � ½a� þ ½a� � ½b� ¼ aþ � ½b� þ bþ � ½a� � ½a� � ½b�; ð9Þ

where a�, b�, a+ and b+ can be obtained through interpolation. We give the interpolation scheme in Section 6.4.

4.2. Temporal jump conditions

When curve C passes a fixed point~x in space at time t, using ~X to denote the point on C which coincides with
the point~x, we have the following relation between ½½wð~X ; tÞ�� ¼ ðwÞtþ � ðwÞt� and ½wð~X ; tÞ� ¼ ðwÞCþ � ðwÞC� for
quantity w,
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w½ �½ � ¼ ½w�; ~vð~xÞ �~nð~X Þ < 0;

�½w�; ~vð~xÞ �~nð~X Þ > 0.

(
ð10Þ
If~vð~xÞ �~nð~X Þ ¼ 0, we can approximate temporal derivatives at~x by those at ~X jCþ or ~X jC� with [[Æ]] = 0. Accord-
ing to Eq. (10), we need spatial jump conditions ½~v� and ½o~v

ot� in our 2D simulation. The latter is given by
o~v
ot

� �
¼ �~v � ½r~v�.
5. Construction of singular force

The jump conditions given in Section 4 are functions of the singular force density. The construction of the
singular force depends on whether the motion of an immersed boundary is prescribed or driven by a force law
based on its deformation.

We consider the general case in which the immersed boundary has Lagrangian mass density qs(a). We can
write the density q(x, y, t) of the whole system as
qðx; y; tÞ ¼ qf ðx; y; tÞ þ
Z

C
qsðaÞdðx� X ða; tÞÞdðy � Y ða; tÞÞda; ð11Þ
where qf(x, y, t) is the fluid density. Note that the Dirac delta function is nondimensional. Taking an infini-
tesimal segment of curve C as shown in Fig. 2, we apply on it the Newton’s second law nondimensionalized
by the same scales as those used to nondimensionalize Eqs. (1) and (2) to obtain
qs

qf

d~V ða; tÞ
dt

¼ ~F f þ~F o; ð12Þ
where ~V ða; tÞ is the velocity of the segment, ~F f is the resultant fluid force acting on the segment, and ~F o is the
force generated by the object itself, which can be muscle force or control force. We simply call ~F o nonfluid
force. The fluid force ~F f is related to the singular force density by
~F f ¼ �~f . ð13Þ

If an object is deformable and if the force law relates the mechanic force and the deformation of the object is
known, the singular force can be readily obtained. The relaxation of a stretched membrane in a fluid is a typ-
ical example. If the membrane is elastic, we have ~F o ¼ ~F solid with
~F solid ¼
oT~s
oa

; ð14Þ
where tension T is given by
T ða; tÞ ¼ E
Jða; tÞ
J eðaÞ

� 1

� �
; ð15Þ
in which E is a constant and Je is J for the unstretched membrane.
V

F
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s

F
f

o Δα
Δα

ρ

Fig. 2. Surface segment of velocity ~V subject to forces ~F f and ~F o.
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If the motion of an object is prescribed, an inverse problem needs to be solved to obtain a singular force
density distribution such that the resulting motion of the object matches the prescribed one. Here, we con-
struct the singular force density distribution based on a feedback control. We let ~F o be ~F control, given by
~F control ¼
qm

qf

dð~V e � ~V Þ
dt

þ Kdð~V e � ~V Þ þ Ksð~X e � ~X Þ; ð16Þ
where qm, Kd and Ks are constants, ~V and ~V e are the simulated and prescribed velocity of the boundary seg-
ment, and ~X and ~X e its simulated and prescribed coordinates. We may also combine a solid model with feed-
back control, i.e. ~F o ¼ ~F solid þ~F control.

When ~F o is from ~F control only, after plugging Eq. (13) and (16) into Eq. (12), we obtain
Km
dD~V

dt
þ KdD~V þ Ks

Z
D~V dt ¼ ~f þ~f s; ð17Þ
where Km ¼ qsþqm
qf

, D~V ¼ ~V e � ~V and ~f s ¼ qs
qf

d~V e
dt . Thus we have a feedback control system as governed by

Eq. (17) and sketched in Fig. 3. This feedback control system has a linear PID (Proportional Integral Deriv-
ative) controller and a nonlinear plant operated through the Navier–Stokes equations. If curve C is massless
(qs = 0), and we let qm = 0, the linear controller becomes a PI (Proportional Integral) controller with Km = 0
in Eq. (17).

The nonlinear plant makes the analytical design of the PID or PI controller very difficult. To tune the PID
or PI controller for reducing the error, D~V , and maintaining numerical stability, we currently resort to a trial
and error approach. Our experience indicates that Km and Kd have to take very small positive values or zero to
ensure numerical stability. The main parameter to be tuned in the PID or PI controller is thus Ks. Since the
pressure jump across a boundary is subject to an arbitrary constant, we tune Ks based on the order of mag-
nitude analysis for the viscous force. The viscous terms in Eq. (1) have order of 1 in the boundary layer of
thickness 1ffiffiffiffi

Re
p along the boundary. From Section 4.1, we estimate
�fs ¼
1

Re
o~v
o~n

� �����
���� � 1ffiffiffiffiffiffi

Re
p .
Let the tolerances for j
R

DV sdtj be Ds in Eq. (17), where subscript s denote a tangential component of a vector.
We have
Ks �
1

Ds

ffiffiffiffiffiffi
Re
p .
6. Implementation of the immersed interface method

We have described the three main components of the immersed interface method, which are the singular
force density, the jump conditions in terms of the singular force density, and finite difference schemes incor-
porated with the jump conditions. Next we implement the method in a flow solver based on the MAC scheme
[11].



462 S. Xu, Z.J. Wang / Journal of Computational Physics 216 (2006) 454–493
6.1. MAC grid and boundary representation

A MAC grid is a staggered Cartesian grid. We use a uniform MAC grid as sketched in Fig. 4(a) for the
finite-difference approximation to governing equations (1)–(3). The center of a cell for pressure p is (i, j), where
i 2 {1, 2, . . . , Nx} and j 2 {1, 2, . . . , Ny}. The center of a cell for velocity component u is (I, j) and the center of
a cell for velocity component v is (i, J), where (I, J) corresponds to ðiþ 1

2
; jþ 1

2
Þ, I 2 {0, 1, . . . , Nx} and

J 2 {0, 1, . . . , Ny}. The dimensions of a cell are Dx and Dy.
We calculate geometric quantities and the singular force density at the Lagrangian points numbered by

index m on curve C, as marked by circles in Fig. 4(b), where m 2 {0, 1, . . . , Nm}. We use periodic cubic
splines to interpolate the values of the geometric quantities and the singular force density at the irregular
points marked as X in Fig. 4(b), which are the intersections of curve C and grid lines. The cost of
cubic–spline interpolation is of order OðNmÞ. We can then identify finite difference stencils that contain
the irregular points, and compute the jump contributions for the finite difference schemes on those
stencils.

To move Lagrangian points (Xm, Ym), we first interpolate the velocity of all the irregular points with an
interpolation scheme given in Section 6.4, and then use periodic cubic splines to interpolate velocity (um, vm)
at the Lagrangian points. When two irregular points are very close to each other, we use one of them in order
to avoid failure of the cubic splines.
6.2. Spatial discretization

With the cell definitions for u, v and p shown in Fig. 5, we can write the second-order central finite difference
approximations to Eqs. (1) and (3) in the following form:
Fig. 4.
variab

F

u(I,j)

v(i,J)

p(i,j)

v(i,J−1)

u(I−1,j)

i,I

j,J

xΔ

yΔ

XX
X

X

m+1
m

m−1

(a) (b)

Discrete representation of the computational domain and the object surface. (a) The MAC grid with staggered arrangement of flow
les; (b) Lagrangian points (open circle) and irregular points (x-mark) on the object surface.

u(I,j)

v(i,J)

(i,j)

(I,J)

(i,j)

(I,J)

(I,J)

p(i,j), D(i,j)

(a) (b) (c)

ig. 5. Cell definitions for (a) u velocity component, (b) v velocity component, and (c) pressure p and velocity divergence D.
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ou
ot

� �
I;j

¼ Cu
I;j �

u2
iþ1;j � u2

i;j

Dx
þ uI ;J vI;J � uI;J�1vI;J�1

Dy

 !
�

piþ1;j � pi;j

Dx

þ 1

Re
uIþ1;j � 2uI;j þ uI�1;j

Dx2
þ uI;jþ1 � 2uI ;j þ uI ;j�1

Dy2

� �
; ð18Þ

ov
ot

� �
i;J

¼ Cv
i;J �

uI;J vI ;J � uI�1;J vI�1;J

Dx
þ

v2
i;jþ1 � v2

i;j

Dy

 !
�

pi;jþ1 � pi;j

Dy

þ 1

Re
viþ1;J � 2vi;J þ vi�1;J

Dx2
þ vi;Jþ1 � 2vi;J þ vi;J�1

Dy2

� �
; ð19Þ

oD
ot

� �
i;j

¼ Cp
i;j þ

piþ1;j � 2pi;j þ pi�1;j

Dx2
þ

pi;jþ1 � 2pi;j þ pi;j�1

Dy2

� 2
uI ;jDI;j � uI�1;jDI�1;j

Dx
þ vi;J Di;J � vi;J�1Di;J�1

Dy

� �

þ 1

Re
Diþ1;j � 2Di;j þ Di�1;j

Dx2
þ Di;jþ1 � 2Di;j þ Di;j�1

Dy2

� �

þ 2
uI ;j � uI�1;j

Dx
vi;J � vi;J�1

Dy
� ui;J � ui;J�1

Dy
vI ;j � vI�1;j

Dx

� �
; ð20Þ
where Cu
I;j, Cv

i;J and Cp
i;j are the terms due to jump contributions in finite differences, and Di,j is computed as
Di;j ¼
uI;j � uI�1;j

Dx
þ vi;J � vi;J�1

Dy
þ CD

i;j; ð21Þ
with the jump contribution term denoted by CD
i;j. Some of the velocity and divergence values in Eqs. (18)–(20)

are not centered in their cells shown in the cell diagram in Fig. 5. We interpolate them from adjacent values.
Again, the interpolation schemes are presented later in Section 6.4.

Cu
I ;j, Cv

i;J , Cp
i;j or CD

i;j is nonzero only if the stencil of a finite difference in the corresponding equation contains
irregular points. To give an example, we calculate Cu

I;j for the case shown in Fig. 6(a). We denote the coordi-
nates of the two irregular points A and B as (X, yj) and (xI, Y), respectively. A jump condition at point A is
now defined as ½�� ¼ ð�ÞXþ � ð�ÞX� , and a jump condition at point B as ½�� ¼ ð�ÞYþ � ð�ÞY� . Cu

I;j is the sum of the
jump contribution from each finite difference in Eq. (18). In this case,

� the jump contribution associated with � u2
iþ1;j�u2

i;j

Dx is
1

Dx
ou2

ox

� �
ðxiþ1 � X Þ þ 1

2

o2u2

ox2

� �
ðxiþ1 � X Þ2

� �
; ð22Þ
� the jump contribution associated with � uI;J vI ;J�uI;J�1vI ;J�1

Dy is
I-1

Schematics of examples for (a) the calculation of jump contribution term Cu
ij and (b) the treatment of boundary conditions on a far-

gid wall.
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1

Dy
ouv
oy

� �
ðyJ � Y Þ þ 1

2

o2uv
oy2

� �
ðyJ � Y Þ2

� �
; ð23Þ
� the jump contribution associated with � piþ1;j�pi;j

Dx is
1

Dx
½p� þ op

ox

� �
ðxiþ1 � X Þ þ 1

2

o2p
ox2

� �
ðxiþ1 � X Þ2

� �
; ð24Þ
� the jump contribution associated with 1
Re

uIþ1;j�2uI ;jþuI�1;j

Dx2 is
� 1

ReDx2

ou
ox

� �
ðxIþ1 � X Þ þ 1

2

o2u
ox2

� �
ðxIþ1 � X Þ2

� �
; ð25Þ
� the jump contribution associated with 1
Re

uI ;jþ1�2uI ;jþuI;j�1

Dy2 is
� 1

ReDy2

ou
oy

� �
ðyjþ1 � Y Þ þ 1

2

o2u
oy2

� �
ðyjþ1 � Y Þ2

� �
. ð26Þ
Eqs. (22) and (23) contain terms of the form of [a Æ b], for example ½ou2

ox � ¼ 2½u ou
ox�, which can be calculated

according to Eq. (9).

In our numerical tests in Section 7, we sometimes plot the streamfunction of a velocity field, which is
obtained by solving
o2w
ox2
þ o2w

oy2
¼ x; ð27Þ
where w is the streamfunction and x is the vorticity. By definition, we have
u ¼ � ow
oy
; v ¼ ow

ox
; ð28Þ

x ¼ ov
ox
� ou

oy
. ð29Þ
Thus we can derive the following jump conditions:
½w� ¼ 0;
ow
ox

� �
¼ 0;

ow
oy

� �
¼ 0;

o2w
ox2

� �
¼ ov

ox

� �
;

o2w
oy2

� �
¼ � ou

oy

� �
.

The central finite difference approximations to Eq. (27) and definition (29) are
wiþ1;j � 2wi;j þ wi�1;j

Dx2
þ

wi;jþ1 � 2wi;j þ wi;j�1

Dy2
þ Cw

i;j ¼ xi;j;

xi;j ¼
vI ;j � vI�1;j

Dx
� ui;J � ui;J�1

Dy
þ Cx

i;j;
where Cw
i;j and Cx

i;j are from the jump contributions in finite differences. They are computed in the similar way
as the calculation of Cu

I ;j given in the previous example.
We now discuss our implementation of the no-slip, no-penetration and the pressure boundary conditions

on a far-field rigid wall. Referring to Fig. 6(b), we enforce the no-slip and no-penetration boundary conditions
as follows:
uðI ; 0Þ þ uðI ; 2Þ
2

¼ 0;
vði; 0Þ þ vði; 1Þ

2
¼ 0. ð30Þ
With the treatment of ðoD
ot Þi;j as presented in Section 6.3, Eq. (20) for the pressure is a discrete Poisson equa-

tion. We currently solve the discrete pressure Poisson equation and streamfunction Poisson equation using
FFT, which has cost of order OðN ij lnðN ijÞÞ, where Nij is the number of nodes in a Cartesian grid. Referring
to Fig. 6(b), we derive from Eq. (1) the following Neumann boundary condition for the pressure at a rigid
wall:
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op
oy

� �
i;j¼1

¼ 1

Re
vi;j¼2 þ vi;j¼0

Dy2
; ð31Þ
where vi,j=0 is computed based on the divergence free condition at grid node (i, J = 0) as following:
uI;J¼0 � uI�1;J¼0

Dx
þ 0� vi;j¼0

Dy
¼ 0. ð32Þ
6.3. Temporal integration

We employ an explicit fourth-order Runge–Kutta scheme in the temporal integration. High-order explicit
schemes are appropriate for the moderate Reynolds numbers that we consider here, as shown by Johnston and
Liu [12,13] and E and Liu [5]. In the flow regime of moderate to high Reynolds numbers, viscous time step
constraint is much less restrictive than the convective one. A high-order temporal integration scheme whose
stability region includes a portion of the imaginary axis can ensure stability, and an implicit treatment of vis-
cous terms is not necessary.

In this section, we focus on how to incorporate temporal jump conditions into the fourth-order Runge–
Kutta scheme. Due to limited temporal jump conditions, the temporal accuracy is only first-order for a grid
point at the instant when the grid point is crossed by an immersed boundary, but the overall temporal accuracy
is not affected much since the number of such grid points is much less than the total number of grid points.

We define vectors q and R as
q ¼ fuI ;j; vi;J ;X m; Y mg; ð33Þ
R ¼ fRu

I;j;R
v
i;J ; um; vmg; ð34Þ
where Ru
I ;j and Rv

i;J are the right-hand sides of Eqs. (18) and (19), respectively. Then we have the ordinary
differential equation as following:
dq

dt
¼ R; ð35Þ
supplemented with Eq. (20), which is rewritten below with subscripts i, j omitted.
oD
ot
¼ Dp þ Rp. ð36Þ
With superscript n denoting a time level and Dt a time step, the sequence of temporal integration of Eq. (35)
using the forth-order Runge–Kutta scheme is as follows:

(1) solve pressure p
nþ1

2
1 and then compute q

nþ1
2

1 :
0� Dn

Dt
2

� 	 ¼ Dp
nþ1

2
1 þ RpðqnÞ;

q
nþ1

2
1 ¼ qn þ Dt

2
Rðqn; p

nþ1
2

1 Þ þ cn
1


 �
;

(2) solve pressure p
nþ1

2
2 and then compute q

nþ1
2

2 :
0� Dn

Dt
2

� 	 ¼ Dp
nþ1

2
2 þ Rpðqnþ1

2
1 Þ;

q
nþ1

2
2 ¼ qn þ Dt

2
Rðqnþ1

2
1 ; p

nþ1
2

2 Þ þ cn
2


 �
;

(3) solve pressure pnþ1
3 and then compute qnþ1

3 :
0� Dn

Dt
¼ Dpnþ1

3 þ Rpðqnþ1
2

2 Þ;

qnþ1
3 ¼ qn þ Dt Rðqnþ1

2
2 ; pnþ1

3 Þ þ cn
3


 �
;
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(4) solve pressure pnþ1
4 and then compute qn+1:
0� Dn

Dt
¼ Dpnþ1

4 þ Rpðqn
3Þ;

qnþ1 ¼ qn þ Dt
1

6
Rðqn; p

nþ1
2

1 Þ þ 2Rðqnþ1
2

1 ; p
nþ1

2
2 Þ þ 2Rðqnþ1

2
2 ; pnþ1

3 Þ þ Rðqnþ1
3 ; pnþ1

4 Þ

 �

þ cn
4

� �
;

where cn
1, cn

2, cn
3 and cn

4 are jump contributions for the temporal discretization of dq

dt in Runge–Kutta sub-
steps. They are nonzero only at those grid nodes which are passed by a boundary. They are computed as
follows:
� treat Runge–Kutta sub-step (1) as a forward finite difference in interval Dt

2
, and calculate cn

1 for a grid
node if the curve C passes the grid node at time t* between time tn and tnþ1

2:
cn
1 ¼

2

Dt
½½q�� þ oq

ot

� �� �
tnþ1

2 � t�

 �� �

;

� treat Runge–Kutta sub-step (2) as a backward finite difference in interval Dt
2
, and calculate cn

2 for a grid
node if the curve C passes the grid node at time t* between time tn and tnþ1

2:
cn
2 ¼

2

Dt
½½q�� þ oq

ot

� �� �
ðtn � t�Þ

� �
;

� treat Runge–Kutta sub-step (3) as a central finite difference in interval Dt, and calculate cn
3 for a grid

node if the curve C passes the grid node at time t* between time tn and tnþ1
2:
cn
3 ¼

1

Dt
½½q�� þ oq

ot

� �� �
ðtnþ1 � t�Þ

� �
;

or if the curve C passes the grid node at time t* between time tnþ1
2 and tn+1:
cn
3 ¼

1

Dt
½½q�� þ oq

ot

� �� �
ðtn � t�Þ

� �
;

� treat Runge–Kutta sub-step (4) as a combination of one forward, one backward, and two central finite
differences in interval Dt, and calculate cn

4 for a grid node if the curve C passes the grid node at time t*

between time tn and tnþ1
2:
cn
4 ¼

1

6Dt
½½q�� þ oq

ot

� �� �
ðtnþ1� t�Þ

� �
þ 2

3Dt
½½q�� þ oq

ot

� �� �
ðtnþ1� t�Þ

� �
þ 1

6Dt
½½q�� þ oq

ot

� �� �
ðtn� t�Þ

� �
;

or if the curve C passes the grid node at time t* between time tnþ1
2 and tn+1:
cn
4 ¼

1

6Dt
½½q�� þ oq

ot

� �� �
ðtnþ1 � t�Þ

� �
þ 2

3Dt
½½q�� þ oq

ot

� �� �
ðtn � t�Þ

� �
þ 1

6Dt
½½q�� þ oq

ot

� �� �
ðtn � t�Þ

� �
.

Time t* and a jump condition [[Æ]] at time t*, which is define as ½½��� ¼ ð�Þt�þ � ð�Þt�� , are obtained by inter-
polation using known information at time level n, nþ 1

2
or n + 1. We present the interpolation schemes

in Section 6.4.
6.4. Filtering and interpolation

For a moving object problem, Lagrangian points on the object boundary are moved using the velocity
interpolated from the surrounding fluid velocity on Cartesian grid points. The boundary shape thus contains
the irregular truncation errors of the interpolation. Since the jump conditions involve the differentiation of
geometric quantities and the singular force density along a boundary, it is important to maintain the shape
smoothness of the object. We employ Fourier filtering to smooth the shape.

It is necessary to interpolate quantities such as a+ (b+), a� (b�), ui,j (vi,j), uI,J (vI,J), ui,J(vI,j), t*, [[Æ]](t*) and the
velocity at irregular points. We categorize the interpolations into three scenarios, as shown in Fig. 7.
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Fig. 7. Interpolation scenarios associated with (a) a smooth function, (b) a discontinuous function at its discontinuity point, and (c) a
piecewise smooth function.
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To determine time t* when an interface crosses a grid point, we monitor the position of a irregular point
along a grid line, i.e. A! B! C in the inset of Fig. 7(a). Since the time is a smooth function of the changing
coordinate of the irregular point, the interpolate scheme is given by
g� ¼ h�gC þ hþgA

h
þOðh2Þ; ð37Þ
where g is time and z is the changing coordinate in Fig. 7(a) for the current case. It can also be shown that
jump condition [[Æ]](t) is a smooth function of time t along the grid line, and therefore the above interpolation
scheme applies to [[Æ]](t*).

The spatial interpolation for a+ (b+), a� (b�) and the velocity at irregular points is described in Fig. 7(b).
The interpolation scheme is
gþ ¼ h�gC þ hþgA

h
� h�½gB�

h
� hþh�

h2

ogB

oz

� �
þOðh2Þ; ð38Þ

g� ¼ h�gC þ hþgA

h
þ hþ½gB�

h
� hþh�

h
ogB

oz

� �
þOðh2Þ; ð39Þ
where [gB] = 0 and g+ = g� for the velocity interpolation since the velocity is continuous.
The interpolation for ui,j (vi,j), uI,J (vI,J), ui,J and vI,j is described in Fig. 7(c). When point D falls between

points A and B as in Fig. 7(c), we have
gB ¼
gA þ gC

2
þ 1

2
½gD� �

1

2

ogD

oz

� �
h� þ 1

4

o
2gD

oz2

� �
ðh�Þ2 þOðh2Þ. ð40Þ
When point D falls between points B and C, we have
gB ¼
gA þ gC

2
� 1

2
½gD� �

1

2

ogD

oz

� �
hþ � 1

4

o
2gD

oz2

� �
ðhþÞ2 þOðh2Þ. ð41Þ
6.5. Force calculation

We here use Cx and Cy respectively to denote the x and y components of the nondimensional force applied
by the fluid to the object. They are nondimensionalized by half of the pressure scale in Eq. (1). Referring to
Fig. 1, they can be calculated as follows:
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Cx ¼ 2

I
C
�pþnx þ

1

Re
ou
on

� �þ� �
dC ð42Þ

¼ �2

I
C

f xdaþ 2

I
C
�p�nx þ

1

Re
ou
on

� ��� �
dC; ð43Þ

Cy ¼ 2

I
C
�pþny þ

1

Re
ov
on

� �þ� �
dC ð44Þ

¼ �2

I
C

f ydaþ 2

I
C
�p�ny þ

1

Re
ov
on

� ��� �
dC. ð45Þ
For a centrally symmetric boundary, decomposing its prescribed motion to the superposition of a translation
and a rotation around the geometric center, we find
I

C
ð�p�nxÞdC ¼ S

duT

dt
;

I
C
ð�p�nyÞdC ¼ S

dvT

dt
;I

C

ou
on

� ��
dC ¼ 0;

I
C

ov
on

� ��
dC ¼ 0;
where (uT, vT) are the translational velocity and S is the area of the object. So Cx and Cy in Eqs. (43) and (45)
can be simplified to
Cx ¼ �2

I
C

f xdaþ 2S
duT

dt
; Cy ¼ �2

I
C

f ydaþ 2S
dvT

dt
. ð46Þ
7. Results

In this section, we test the method in several distinct fluid–structure interactions, including flows of know
analytical solutions, flow induced by a relaxing balloon, flow past a cylinder, a flapper, and multiple cylinders.
In particular, we investigate the spatial and temporal convergence rates of the method, and demonstrate the
robustness and efficiency of the method in handling single or multiple boundaries prescribed with known
motion or driven by a force law. The Reynolds number, Re, of the flows ranges from 1 to 200.

In these tests, object boundaries are massless, i.e. qs = 0 in Eqs. (11) and (12), and we have f = Fo. We let
qm = 0 in Eq. (16). So Km = 0 and fs = 0 in Eq. (17) when the feedback control is used to construct force Fo.

7.1. Flow without immersed boundaries

As a first test, we simulate a flow without any immersed boundaries to check the flow solver. We consider
the following flow which satisfies the Navier–Stokes equations exactly:
u ¼ �
ffiffiffiffiffiffi
Re3
p

4
exp � 17

256
ffiffiffiffiffiffi
Re3
p t

� �
cos

ffiffiffiffiffiffi
Re3
p

16
x

� �
cos

ffiffiffiffiffiffi
Re3
p

4
y

� �
;

v ¼
ffiffiffiffiffiffi
Re3
p

16
exp � 17

256
ffiffiffiffiffiffi
Re3
p t

� �
sin

ffiffiffiffiffiffi
Re3
p

16
x

� �
sin

ffiffiffiffiffiffi
Re3
p

4
y

� �
;

p ¼
ffiffiffiffiffiffiffi
Re23
p

1024
exp � 34

256
ffiffiffiffiffiffi
Re3
p t

� �
17 sin

ffiffiffiffiffiffi
Re3
p

16
xþ

ffiffiffiffiffiffi
Re3
p

4
y

� �
sin

ffiffiffiffiffiffi
Re3
p

16
x�

ffiffiffiffiffiffi
Re3
p

4
y

� ��

�15 cos

ffiffiffiffiffiffi
Re3
p

16
xþ

ffiffiffiffiffiffi
Re3
p

4
y

� �
cos

ffiffiffiffiffiffi
Re3
p

16
x�

ffiffiffiffiffiffi
Re3
p

4
y

� ��
.

We simulated the flow at Re = 1 in the domain defined by � 16pffiffiffiffi
Re3p 6 x 6 16pffiffiffiffi

Re3p and � 4pffiffiffiffi
Re3p 6 y 6 4pffiffiffiffi

Re3p . Periodic
boundary conditions were used in this test.

We run the simulation up to time t = 10 with time step Dt = 0.01 and different spatial resolutions to check
the spatial convergence rate. The infinity norm of numerical error based on the analytical solution is given in
Table 1, where the order of accuracy is defined as



Table 1
Spatial convergence analysis for the flow solver without immersed boundaries

Nx · Ny iui1 Order ivi1 Order ipi1 Order

16 · 16 1.40 · 10�3 3.49 · 10�4 4.04 · 10�5

32 · 32 3.47 · 10�4 2.01 8.66 · 10�5 2.01 1.03 · 10�5 1.97
64 · 64 8.65 · 10�5 2.00 2.16 · 10�5 2.00 2.57 · 10�6 2.00
128 · 128 2.16 · 10�5 2.00 5.40 · 10�6 2.00 6.43 · 10�7 2.00

The infinity norm is based on the analytical solution.

Table
Tempo

Dt

0.01
0.02
0.04
0.08

Tempo
Dt = 0

Table
Effect

Keep o

Discar

Table
Tempo

Dt

0.04
0.08
0.16
0.32

Tempo
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order ¼ log2

k � k1
k � �k1

� �
;

where iÆÆi1 is the infinity norm of a field with a resolution twice the resolution of a field associated with infinity
norm iÆi1. Clearly, second-order spatial convergence rate is achieved, as expected from the central finite dif-
ference schemes in space.

We fix t = 10 and Nx · Ny = 32 · 32, but use different time steps to check the temporal convergence rate.
We compute a reference solution using a small time step, Dt = 0.001, and subtract the reference solution from
the other numerical solutions to cancel out the error due to spatial discretization. The infinity norm of numer-
ical error based on the reference solution is given in Table 2. Only first-order temporal convergence rate is
achieved, which is lower than the expected fourth-order convergence rate of the Runge–Kutta scheme. This
is due to the numerical treatment of the temporal derivative of the divergence, oD

ot , in pressure equation
(20), where we set divergence D at time levels nþ 1

2
and n + 1 to be zero, which does not follow the error can-

cellation mechanism in the Runge–Kutta scheme.
If we discard term oD

ot in Eq. (20), we can achieve nearly fourth-order temporal convergence rate, as seen
from Table 3. The simulation is run to t = 25.6, and the reference solution is computed with Dt = 0.0005
and Nx · Ny = 32 · 32. However, keeping oD

ot in pressure equation (20) improves the divergence-free condition,
as indicated by the comparisons in Table 4. In Table 4, the simulation was run to t = 10 with Dt = 0.01 and
2
ral convergence analysis for the flow solver without immersed boundaries

iui1 Order ivi1 Order ipi1 Order

3.28 · 10�8 1.70 · 10�8 2.92 · 10�8

6.92 · 10�8 1.08 3.59 · 10�8 1.08 6.17 · 10�8 1.08
1.43 · 10�7 1.05 7.39 · 10�8 1.04 1.27 · 10�7 1.04
2.90 · 10�7 1.02 1.51 · 10�7 1.03 2.59 · 10�7 1.03

ral divergence term oD
ot in pressure equation (3) is included. The infinity norm is based on a reference solution computed with

.001.

4
of temporal divergence term oD

ot in pressure equation (3) on numerical accuracy

iui1 ivi1 ipi1 iDi1
D
ot 3.46 · 10�4 8.66 · 10�5 1.03 · 10�5 1.25 · 10�8

d oD
ot 4.71 · 10�4 2.22 · 10�4 7.46 · 10�4 4.13 · 10�4

3
ral convergence analysis for the flow solver without immersed boundaries

iui1 Order ivi1 Order ipi1 Order

5.84 · 10�14 1.21 · 10�14 5.10 · 10�14

9.71 · 10�13 4.06 1.19 · 10�13 3.30 1.52 · 10�13 1.58
1.75 · 10�11 4.17 1.91 · 10�12 4.00 2.55 · 10�12 4.07
4.08 · 10�10 4.54 3.08 · 10�11 4.01 4.27 · 10�11 4.07

ral divergence term oD
ot in pressure equation (3) is not included. The infinity norm is based on a reference solution.
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Nx · Ny = 32 · 32. From Table 4, we note that the accuracy based on the analytical solution is about the same
with or without oD

ot , which indicates that the error is dominated by the spatial error instead of the temporal one
even at this large Dt = 0.01. In our later simulations, we have about the same spatial resolution as the current
case but smaller Dt. So we keep oD

ot to better enforce the divergence-free condition without losing the accuracy.

7.2. Taylor–Couette flow

We next consider Taylor–Couette flow between two rotating and translating concentric cylinders. The
geometry of the flow is shown in Fig. 8, with r1 = 0.5, r2 = 1, X1 = 1 and X2 = �1. The Reynolds number

based on the radius and the angular velocity of the outer cylinder is Re ¼ jX2jr2
2

m ¼ 10. To test moving bound-
aries crossing the Cartesian grid, we allow the center of the cylinders to oscillate according to
xc ¼ d sinðtÞ; yc ¼ d sinðtÞ;

where d is a constant. The analytical solution to the flow between the two cylinders is given by
u ¼ d � cosðtÞ � Aþ B
r2

� �
ðy � ycÞ;

v ¼ d � cosðtÞ þ Aþ B
r2

� �
ðx� xcÞ;

p ¼ d � sinðtÞ � ðxþ yÞ þ A2r2

2
� B2

2r2
þ AB � lnðr2Þ;
where A ¼ X2r2
2
�X1r2

1

r2
2
�r2

1

, B ¼ ðX1�X2Þr2
1
r2

2

r2
2
�r2

1

, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xcÞ2 þ ðy � ycÞ

2
q

. The analytical solution to the flow inside the
inner cylinder is
u ¼ d � cosðtÞ � X1ðy � ycÞ;
v ¼ d � cosðtÞ þ X1ðx� xcÞ;

p ¼ d � sinðtÞ � ðxþ yÞ þ X2
1r2

2
.

We use periodic boundary conditions at the far-field boundaries. The nonfluid force model for both cylinders
is given by
Fo ¼ KsðXe � XÞ; ð47Þ

with Ks = 1000.
4

4r

r

1

1

2

2

Ω
Ω

Fig. 8. Geometry of flow between two rotating concentric cylinders.
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7.2.1. d = 0

In the steady state, the normal force density, fn, is zero and the tangential force density, fs, is a constant at
the inner cylinder. Referring to the jump conditions in Section 4, we know the jump conditions across the
inner cylinder for all the first-order and second-order velocity derivatives and all the second-order pressure
derivatives are nonzero. Therefore the simulation of this case is a good test to check the spatial convergence
rate of the immersed interface method. In particular, we look at the infinity error norm to check the simulation
accuracy locally. We use a very small time step, Dt = 0.0001, to ensure the temporal discretization error is neg-
ligible compared with the spatial one. The results are given in Table 5, which indicate second-order spatial
convergence rate for both the velocity and the pressure.

As indicated by Lemma 2, the discretization of the Laplace operator near the cylinders in Eqs. (1) and (3) is
only first-order accurate because only limited jump conditions are used and the jump conditions for velocity
and pressure derivatives of higher orders are nonzero. Interestingly, we still achieve second-order accuracy of
the flow field even near the cylinders. The same phenomenon was noted by Li and Lai in their simulation [19].

We calculate jump conditions across the inner cylinder surface based on the analytical solutions, and com-
pare them with those computed from the formula given in Section 4. Fig. 9 shows the comparison for ½o2u

ox2� with

½�� :¼ ð�ÞXþ � ð�ÞX� , and ½o2p
oy2� with ½�� :¼ ð�ÞYþ � ð�ÞY� , indicating very good agreement. For these comparisons,

the spatial resolution of the simulation is Nx · Ny · Nm = 64 · 64 · 128.

7.2.2. d = 0.5
In this case, the velocity across the two cylinders are not smooth, which causes jumps of temporal velocity

derivatives and therefore jump contributions in temporal velocity discretizations for a grid point when it is
crossed by the cylinders. Thus this case provides a test of the effect of the temporal jump contributions on
the temporal accuracy.

We first run simulations with the temporal jump contributions up to t = 10 with a fixed spatial resolution,
Nx · Ny · Nm = 128 · 128 · 256. We compute a reference solution using a very small time step, Dt = 5 · 10�5,
and subtract the reference solution from the other numerical solutions to cancel out spatial discretization error
Table 5
Spatial convergence analysis for steady Taylor–Couette flow

Nx · Ny, Nm iui1 Order ivi1 Order ipi1 Order

32 · 32, 64 2.09 · 10�2 1.65 · 10�2 4.26 · 10�2

64 · 64, 128 6.03 · 10�3 1.79 5.33 · 10�3 1.63 9.18 · 10�3 2.21
128 · 128, 256 1.56 · 10�3 1.95 1.35 · 10�3 1.98 2.34 · 10�3 1.97
256 · 256, 512 4.12 · 10�4 1.92 4.23 · 10�4 1.67 4.68 · 10�4 2.32

The infinity norm is based on the analytical flow solution.
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Fig. 9. Comparisons between analytical and numerical results for jump conditions.



Table 6
Temporal convergence analysis for oscillating Taylor–Couette flow

Dt iui1 Order ivi1 Order ipi1 Order

8 · 10�4 1.01 · 10�4 1.32 · 10�4 9.92 · 10�3

4 · 10�4 4.83 · 10�5 1.06 5.94 · 10�5 1.15 8.70 · 10�3 0.19
2 · 10�4 3.06 · 10�5 0.67 2.17 · 10�5 1.45 4.76 · 10�3 0.87
1 · 10�4 6.96 · 10�6 2.14 7.67 · 10�6 1.50 1.00 · 10�3 2.25

Temporal jump contributions are included. The infinity norm is based on a reference solution.

Table 7
Temporal convergence analysis for oscillating Taylor–Couette flow

Dt iui1 Order ivi1 Order ipi1 Order

8 · 10�4 9.68 · 10�5 1.32 · 10�4 9.71 · 10�3

4 · 10�4 5.20 · 10�5 0.90 6.09 · 10�5 1.12 8.69 · 10�3 0.16
2 · 10�4 2.91 · 10�5 0.84 1.58 · 10�5 1.94 4.76 · 10�3 0.87
1 · 10�4 7.26 · 10�6 2.00 6.00 · 10�6 1.40 1.01 · 10�3 2.24

Temporal jump contributions are not included. The infinity norm is based on a reference solution.
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and obtain temporal error. The infinity norm of the temporal error is shown in Table 6. We then run another
set of simulations without the temporal jump contributions. The results are provided in Table 7.

Tables 6 and 7 indicate that the temporal convergence rates with and without the temporal contributions
are about the same. Both are nearly first-order instead of fourth-order because of the numerical treatment to
the temporal divergence term in the pressure equation (see Section 7.1). In addition, the inclusion of the tem-
poral jump contributions has negligible effect on the local and overall accuracy of the numerical solutions
based on the analytical solution, as indicated by Tables 8 and 9.

7.3. Flow induced by a relaxing balloon

In this test, we compute the moving boundary problem considered by Li and Lai [19], where a 2D distorted
pressurized balloon immersed in an incompressible fluid relaxes to its circular equilibrium shape. The initial
velocity and the pressure are set zero, and the only driving force is the balloon tension. The fluid flow and
the balloon motion are fully coupled. At equilibrium, the velocity is zero and the pressure is piecewise constant
inside and outside the balloon with a jump across the balloon.

The initial shape of the distorted balloon expressed in the cylindrical coordinates (r, h) is
1 Th
rðhÞ ¼ r0ð1þ � sinðjhÞÞ; 0 6 h 6 2p;
where r0, � and j are constants, and j is an integer. The normal and the tangential force densities of the driving
force are
fn ¼ E � kc; f s ¼ 0;
where E is a constant and kc the curvature. At equilibrium, the radius of the balloon, re, is
re ¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:5�2

p
;

and the pressure jump across the balloon is E/re. The area of the balloon is conserved and it is equal to pr2
e .

We first run the test with the same parameter values as used by Li and Lai (after correcting some typo errors
in their paper [20]1). They are r0 = 0.5, � = 0.4, j = 5, E = 0.05 and Re = 1. Here Reynolds number Re = 1
corresponds to viscosity l = 1. The initial (t = 0) and the equilibrium (t =1) balloon shapes in the compu-
tational domain are given in Fig. 10. The boundaries of the computational domain are rigid walls. We simulate
the case up to t = 98 with Nx · Ny · Nm = 64 · 64 · 128 and Dt = 7 · 10�5.
e initial interface should be r(h) = r0 + e sin(kh) with e = 0.2. The value of l should be 1 instead of 0.1 [20].



Table 8
Numerical accuracy with and without temporal jump contributions

iui1 ivi1 ipi1

With temporal jump contributions 2.04 · 10�2 2.01 · 10�2 3.48 · 10�2

Without temporal jump contributions 2.04 · 10�2 2.01 · 10�2 3.48 · 10�2

The infinity norm is based on the analytical solution.

Table 9
Numerical accuracy with and without temporal jump contributions

iui2 ivi2 ipi2

With temporal jump contributions 6.94 · 10�2 1.33 · 10�1 9.26 · 10�1

Without temporal jump contributions 6.94 · 10�2 1.33 · 10�1 9.26 · 10�1

The 2-norm is based on the analytical solution.
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Fig. 10. Numerical evolution of the balloon shape and the vorticity and the velocity fields for flow induced by the relaxation of a distorted
balloon.
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Fig. 10 plots the balloon shapes, the vorticity contours and the velocity vectors at time t = 7, 21 and 35. The
balloon shapes at these time instants are very close to those obtained by Li and Lai [19]. We regard the balloon
is near equilibrium at time t = 98. The pressure at time t = 98 is plotted in Fig. 11. The conservation of the
area of the balloon is checked in Fig. 12 for Re = 1 and Re = 100, which indicates very little leakage, about
0.1%. The simulation for Re = 100 is run with Dt = 0.0001 and the same spatial resolution as Re = 1. Fig. 13
plots the temporal variation of the balloon radius at h = p/10 at Re = 1 and Re = 100. We can observe at
Re = 100 the fast relaxation of the balloon through damped oscillations, which are absent at Re = 1.
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We perform spatial convergence analysis for the flow field of Re = 10 at time t = 2. In this analysis, the time
step is Dt = 0.0001. We calculate the error between a simulated flow field and the one obtained by the fine grid
Nx · Ny · Nm = 256 · 256 · 512. Table 10 give the infinity norm of the error against the spatial resolution.
Near second-order convergence rate for both velocity components is observed. When the spatial convergence



Table 10
Spatial convergence analysis for the flow induced by a relaxing balloon

Nx · Ny, Nm iui1 Order ivi1 Order

16 · 16, 32 6.14 · 10�2 8.16 · 10�2

32 · 32, 64 1.49 · 10�2 2.04 2.91 · 10�2 1.49
64 · 64, 128 3.56 · 10�3 2.07 7.25 · 10�3 2.00
128 · 128, 256 7.33 · 10�4 2.28 7.80 · 10�4 3.22

The infinity norm is based on a reference solution.
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rate for the pressure is calculated, special care is needed near the interface. At different spatial resolutions, a
grid point can be inside the balloon at one grid level and outside at another, such as the middle grid point
sketched in Fig. 14. We thus discard this type of points to exclude the pressure jump in the calculation of
the infinity norm. The same treatment is not necessary for the velocity since the velocity is continuous across
the interface. We denote the modified infinity norms for u, v and p by iu0i1, iv0i1 and ip0i1 instead of iui1,
ivi1 and ipi1, respectively. The results of the convergence analysis based on the modified infinity norm are
given in Table 11, which indicate the convergence rate for the pressure is about the same as the velocity.

7.4. Flow passing a moving cylinder

In simulations using the immersed interface method and the immersed boundary method, flexible objects
are often constructed as a network of springs. Springs are also used to tether the objects. The spring constant
is given by the material property and it defines a characteristic time scale associated with the vibration mode of
an object. To investigate the effect of this time scale on a time-dependent flow, we simulate flow passing a
cylinder which is accelerated from rest to a uniform velocity.

The geometry is given in Fig. 15, with rigid walls as far-field boundaries. The velocity of the cylinder, uc, is
given by
Table
Spatia

Nx · N

16 · 16
32 · 32
64 · 64
128 · 1

The in

Fig. 14
at ano
uc ¼
1

1þ tanhð2Þ tanh
4t
tc
� 2

� �
þ tanhð2Þ

� �
;

11
l convergence analysis for the flow induced by a relaxing balloon

y, Nm iu0i1 Order iv0i1 Order ip0i1 Order

, 32 2.33 · 10�2 4.97 · 10�2 8.59 · 10�2

, 64 9.66 · 10�3 1.27 2.22 · 10�2 1.16 2.62 · 10�2 1.71
, 128 2.56 · 10�3 1.91 6.21 · 10�3 1.84 1.10 · 10�2 1.25
28, 256 5.68 · 10�4 2.17 6.06 · 10�4 3.36 2.15 · 10�3 2.35

finity norm is based on a reference solution and is modified to exclude the grid points near the interface.

. Schematic to show that a grid point is at one side of a pressure discontinuity point at one grid resolution level and at the other side
ther level.
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where tc is the characteristic acceleration time. Fig. 16 plots uc versus t. We define Reynolds numbers based on
the uniform velocity. The spring force model is given by Eq. (47), and sketched on the left in Fig. 17. The tem-
poral resolution of the simulation is set by the CFL numbers with CFLm ¼ Dt

Re ð 1
Dx2 þ 1

Dy2Þ ¼ 0:1 and CFLc ¼
Dtðumax

Dx þ
vmax

Dy Þ ¼ 0:1.
We vary tc to be 0.1, 0.2, 0.4, 0.8, 1.6, 3.2 and 6.4 with fixed Re = 20 and Ks = 1000. As seen in Fig. 18, the

Lagrangian points can follow the prescribed motion when tc P 1.6. When tc = 0.1, large oscillations are seen
in drag history, as shown in Fig. 19(a). Its power spectrum in Fig. 19(b) has a dominant frequency, fs = 7.
When tc = 1.6, oscillations in the drag history has the same frequency but smaller amplitude, as seen in
Fig. 20. The same frequency is observed for all values of tc. The amplitudes of the oscillations decrease as
tc increases.

This cylinder and spring system can be effectively approximated as a spring-mass–damper system, as
described on the right of Fig. 17. The frequency of the damped oscillations is given by
prescribed
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Fig. 17. Schematic showing the physical interpretation of the nonfluid force model.
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fs ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ke

Mc
ð1� f2Þ

r
; ð48Þ
where Ke = 2pKs (2p comes from the upper limit of nondimensional Lagrangian parameter a) is the effective
spring stiffness, Mc ¼ p

4
is the fluid mass, and f ¼ b

2
ffiffiffiffiffiffiffiffi
McKe
p is the damping ratio, where b is the damping coefficient

of the damper. As shown in Fig. 21(a), the oscillation frequency is proportional to
ffiffiffiffiffi
Ks
p

, as expected for a lin-
ear spring.

Define Ms ¼ Ks=f 2
s . From Eq. (48), we have Ms ¼ 2pMc

1�f2 ¼ p2

2ð1�f2Þ, which is only a function of the damping

ratio, f. We now look at the relation between Ms and Reynolds number Re, as plotted in Fig. 21(b), whereαg eρ(ρα
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Re = 20, 40, 50, 100, 150,200 with fixed tc = 0.2 and the corresponding Ks = 1000, 500, 400, 200, 150, 100. We
observe little dependence of Ms on the Reynolds number, Re, in the range.

In summary, we find that as long as the typical time scale of the flow is about 10 times larger than the char-
acteristic time scale of the spring system, the Lagrangian points can follow the prescribed motion. We will use
this as our rule of thumb for simulating flow past a cylinder and a flapping wing in the following sections.
7.5. Flow passing a stationary cylinder

Flow passing a stationary cylinder is a canonical example to test numerical methods. We use the geometry
shown in Fig. 15 for the test of our immersed interface method. Initially, the flow is set to be uniform with
u = 1 and the cylinder moves with the same velocity as the flow. The far-field boundary conditions used
for the test are

� u = 1, v = 0 and op
ox ¼ 1

Re
o2u
ox2 at x = �8 (boundary W);

� ou
ox ¼ 0, ov

ox ¼ 0 and op
ox ¼ 1

Re
o2u
ox2 at x = 24 (boundary E);

� ou
oy ¼ 0, v = 0 and op

oy ¼ 1
Re

o2v
oy2 at y = �8 (boundary S);

� ou
oy ¼ 0, v = 0 and op

oy ¼ 1
Re

o2v
oy2 at y = 8 (boundary N).

The discrete forms of the above boundary conditions are similar to those described in Eqs. (30) and (31). In
particular, the divergence-free condition is incorporated in the discrete pressure boundary conditions. We take
the far-upstream velocity and the cylinder diameter as the velocity and the length scales. We compute the flow
at five Reynolds numbers, Re = 20, 40, 50, 100 and 200. The spatial resolution for these computations is
Nx · Ny · Nm = 640 · 320 · 128. The temporal resolution is set by CFLm = CFLc = 0.2.

Non-fluid force Fo for the cylinder is a combination of a feedback control and a spring-supported mem-
brane, as shown schematically in Fig. 22. Thus, we have Fo = Fsolid + Fcontrol, with Fsolid and Fcontrol given by
Fsolid ¼ Em
o

oa
J
J e
� 1

� �
s

� �
þ Es 1� r

re

� �
X; ð49Þ

Fcontrol ¼ KdðVe � VÞ þ KsðXe � XÞ; ð50Þ
where Em and Es are constants, r is the radius, and re is the desired radius, i.e. re = 0.5. Table 12 lists the values
of force parameters Em, Es, Kd and Ks for the considered Reynolds numbers. The dominant parameter in these
tests is Ks. For the Reynolds numbers considered here, we can determine Ks from the following empirical
formula:
Ks �
20000

Re
.
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Fig. 22. Schematic of the force construction for a stationary cylinder in flow.

Table 12
Parameter values in the force construction for a stationary cylinder in flow at different Reynolds numbers

Re = 20 Re = 40 Re = 50 Re = 100 Re = 200

Em 0 40 0 10 0
Es 0 40 0 20 0
Kd 0.1 0.1 0 0 0
Ks 1000 400 500 160 100
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We remark that the combination of the solid model and the feedback control in these tests is to demon-
strate the flexibility of the force construction. In cases of Re = 20, 50 and 200, we only use the feedback
control.
0 2 4 6 8 10

–100

–50

0

50

time

dr
ag

Cd versus t
20 40 60 80 100

2.22

2.24

2.26

2.28

time

dr
ag

Cd versus t

0 5 10 15 20
–0.15

–0.1

–0.05

0

0.05

0.1

time

lif
t

Cl versus t

20 40 60 80 100

–5

–4.8

–4.6

–4.4

–4.2

x 10
–6

time

lif
t

Cl versus t

(a) (b)

(c) (d)

Fig. 23. Drag and lift coefficients versus time for flow passing a stationary cylinder at Re = 20: (a) drag history in transient; (b) drag
history from transient to steady state; (c) lift history in transient; (d) lift history from transient to steady state.
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7.5.1. Re = 20, 40 and 50

Fig. 23 shows the drag and the lift history for Re = 20. The large oscillations at the start are due to the
impulsive stop of the cylinder, which are analyzed in the previous section. The flow can be considered steady
at t = 100, long after the transient. The nonzero lift of order 10�6 is ascribed to numerical error.

Between Re = 40 and Re = 50, the flow becomes unstable and develops a von Karman wake. Figs. 24 and
25 show the drag and the lift history for Re = 40 and Re = 50. At Re = 40 the oscillations in lift damp out, and
at Re = 50 they amplify.

Figs. 26–28 show the flow details around the cylinder for Re = 20 at t = 100 and Re = 40 at t = 120.
Table 13 compares length of the trailing bubble LTB, angle of separation hs, and drag coefficient Cd with

previous experimental and computational results summarized in [27]. Geometric quantities TLB and hs com-
pare favorably with others, though the value of drag coefficient Cd is slightly higher than previous studies.
Russell and Wang [27] suggested that their simplification of the far-field boundary conditions is a source of
increased drag. We believe the reason for the drag increase in our case is the same. To test this, we have chan-
ged the domain size for Re = 20 from 32 · 16 to 48 · 24 with the corresponding change of Nx · Ny from
640 · 320 to 960 · 480. The new drag and lift history is shown in Fig. 29. At the steady state, the drag coef-
ficient settles down to 2.14, which is in the range of previously reported values.

The flow inside the cylinder is static in our case. Thus the vorticity and the pressure distributions over the
cylinder surface, denoted as xs and ps respectively, can be calculated as follows:
xs ¼
ov
ox
� ou

oy

� �
s

¼ ov
ox

� �
� ou

oy

� �
¼ �Re � fs; ps ¼ ½p� ¼ fn;
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Fig. 24. (a) Drag and (b) lift coefficients versus time for flow passing a stationary cylinder at Re = 40.
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Fig. 25. (a) Drag and (b) lift coefficients versus time for flow passing a stationary cylinder at Re = 50.
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Fig. 26. Streamlines of flow passing a stationary cylinder at the steady state.

–5 0 5 10 15 20
–5

0

5

Re = 20 

–5 0 5 10 15 20
–5

0

5

Re = 40

(a)

(b)

Fig. 27. Vorticity contours of flow passing a stationary cylinder at the steady state.
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where ½�� :¼ ð�ÞCþ � ð�ÞC� . Figs. 30 and 31 compare the vorticity and the pressure distributions over the cylinder
surface with the previous computational results [2] for Re = 20 and Re = 40, indicating a good agreement.

We also monitor the surface position and the surface velocity distribution for an object to see whether the
force model enforces the desired motion while maintaining the shape. Fig. 32(a) shows the temporal variation
of the relative error er for the surface position, where er is defined as
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Fig. 30. (a) Vorticity and (b) pressure distributions on the cylinder surface in flow at Re = 20 – lines: current results, open circles:
numerical results from [2].
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Fig. 32. Flow past a stationary cylinder at Re = 20: (a) relative shape error er versus time; (b) the velocity distribution on the cylinder
surface at time t = 100.
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results from [2].
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er ¼ 100
max

m
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

m þ Y 2
m

q
Þ � 0:5

0:5

�������
�������.
The relative error of the surface position at steady state is less than 0.04%. Fig. 32(b) shows the velocity
distribution around the cylinder surface at time t = 100.

7.5.2. Re = 100 and 200

Figs. 33 and 34 are the drag and the lift history for Re = 100 and Re = 200.
Figs. 35 and 36 show the flows around the cylinder in terms of vorticity and pressure. The expected trailing

Von Karman vortex street develops in the wake.
Table 14 provides a summary of results for Re = 100 and Re = 200, where St is the Strouhal number, i.e.

the nondimensional vortex shedding frequency. Our results are within the ranges of the previously reported
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Fig. 33. (a) Drag and (b) lift coefficients versus time for flow passing a stationary cylinder at Re = 100.
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Fig. 34. (a) Drag and (b) lift coefficients versus time for flow passing a stationary cylinder at Re = 200.
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Fig. 35. Vorticity contours of flow passing a stationary cylinder.
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Fig. 36. Pressure contours of flow passing a stationary cylinder.

Table 14
Summary of flow characteristics for flow passing a stationary cylinder at Re = 100 and Re = 200

Re = 100 Re = 200

Cd Cl St Cd Cl St

Previous 1.33 ± 0.014: ±0.25: 0.164: 1.17 ± 0.058: ±0.47: 0.192:
range [27] 1.43 ± 0.009 ±0.339 0.175 1.45 ± 0.036 ±0.75 0.202

Present 1.423 ± 0.013 ±0.34 0.171 1.42 ± 0.04 ±0.66 0.202
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values. We have also changed the domain size for Re = 100 from 32 · 16 to 48 · 24 with the corresponding
change of Nx · Ny from 640 · 320 to 960 · 480. The new drag and lift history is shown in Fig. 37, which shows
that Cd = 1.379 ± 0.009, Cl = ± 0.31, and St = 0.167.

7.6. Flow around a flapping wing

In this example, we simulate the flow around a hovering wing inside a rigid box, as described in Fig. 38,
with Nx · Ny · Nm = 512 · 512 · 512 and Dt = 0.001. The nonfluid force is given by Eqs. (49) and (50) with
Em = 2, Es = 2, Kd = 0.1 and Ks = 160. The wing is an ellipse with chord length c and aspect ratio e. We take

c as the length scale, pA0

T f
the velocity scale, and

cT f

pA0
the time scale, where A0 is the amplitude of the wing center

translation and Tf is the wing flapping period. The nondimensional flapping period is tf ¼ pA0

c . The nondimen-
sionalized wing motion is governed by
Fig.
aðtÞ ¼ 0:5a0 cos
2t
a0

� �
þ 1

� �
;

hðtÞ ¼ h0 1� sin
2t
a0

þ /

� �� �
;
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37. (a) Drag and (b) lift coefficients versus time for flow passing a stationary cylinder at Re = 100 in a domain of size 48 · 24.
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where a(t) is the displacement of the wing with an amplitude a0 = A0/c, h(t) is the angle of attack (we use h
instead of a, since a is used as the Lagrangian parameter of a surface) with amplitude 2h0, and / the phase
difference. The Reynolds number is defined as Re ¼ pA0c

T f m . We run the simulation for e = 4, a0 = 2.5, h0 ¼ p
4
,

/ = 0 and Re = 157, which are the same as used by Wang [35].
Fig. 39 shows four snapshots of the computed vorticity fields near the wing during one flapping period.

They are very similar to those obtained by Wang [35], where the physical interpretation was given.
We plot instantaneous drag and lift in Fig. 40 and compare them with the results of Wang [35]. Considering

the difference in the far-field boundary conditions and the inevitable difference of the wing motion due to the
oscillations of Lagrangian points, the agreement is quite good.

We define the shape distortion to be
ed ¼ max
m
ðX m � X emÞ2 þ ðY m � Y emÞ2

 �

;

Fig. 39. Vorticity fields around a hovering wing of Re = 157 at four different instants in a flapping period.
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where (Xem, Yem) is the prescribed coordinates of Lagrangian point m. The shape distortion of the wing is very
small, as seen in Fig. 41.

Fig. 42(a) and (b) show the velocity evolution of Lagrangian points at the leading edge and in the middle of
the wing, which indicates that it is more difficult to control the Lagrangian points at the leading and trailing
edges to follow the prescribed velocity.

7.7. Flow passing multiple cylinders

We provide two examples below to demonstrate the capability and efficiency of our method to simulate
flows with multiple moving objects.
120 125 130 135 140

0

0.5

time

ve
lo

ci
ty

120 125 130 135 140

0

0.5

time

ve
lo

ci
ty

(a) (b)
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7.7.1. Two cylinders moving with respect to each other

This example was previously studied by Russell and Wang [27]. The initial geometry, shown in Fig. 43, is
the same as theirs. In this simulation, Nx · Ny · Nm = 640 · 320 · 128, and Dt = 0.0005. The far-field bound-
aries are rigid walls. The nonfluid force for both cylinders is given by Eq. (47) with Ks = 800. To avoid the
impulsive start of the cylinders, we let each cylinder oscillate about its initial position for two periods and then
move toward the other at Re = 40. The motion of the lower cylinder is given by
Fig. 44
(a) vor
xlc ¼
4
p sin pt

4

� 	
; 0 6 t 6 16;

t � 16; 16 6 t 6 32;

�

and the motion of the upper cylinder is given by
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. Flow fields around two cylinders moving with respect to each other at Re = 40 when two cylinders are closest. Contours of
ticity and (b) pressure.
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Fig. 46. (a) Drag and (b) lift coefficients versus time for the upper cylinder in flow around two cylinders moving with respect to each other
at Re = 40.
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xuc ¼
16� 4

p sin pt
4

� 	
; 0 6 t 6 16;

32� t; 16 6 t 6 32.

�

Fig. 44 shows the vorticity and pressure fields at time t = 24, when the two cylinders are closest to each
other, and Fig. 45 shows the vorticity and pressure fields at time t = 32.

Fig. 46 shows the temporal evolution of the drag and lift coefficients for the upper cylinder. We see the same
drag behavior as obtained by Russell and Wang [27], that is an increase in drag as the two cylinders approach
each other and a decrease in drag as they pass in close proximity. The two cylinders are repulsive when
approaching each other and become attractive after passed each other.

7.7.2. Cylinders translating along a circle

In this last example, we simulate cylinders translating with the same speed along a circle to examine the
efficiency of our method for simulating multiple moving objects.
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The geometry of the simulation is given in Fig. 47. The Reynolds number based on the diameter and the
translational speed of a cylinder is Re = 20. The nonfluid force for each cylinder is modeled again by Eqs. (49)
and (50) with Em = 20, Es = 20, Kd = 0 and Ks = 800. Simulations are carried out with Nx · Ny · Nm = 256 ·
256 · 256, and Dt = 0.0002.

Table 15 lists the computational time versus the number of cylinders in 40,000 time integration steps. Since
the computational time associated with a cylinder is of order OðN mÞ, there is no significant increase of the com-
putational time when one or two more cylinders are added. Most computational time is spent on the FFT
Poisson solver for the pressure, which has cost of order OðN ij lnðNijÞÞ.

Fig. 48 shows the vorticity and the pressure contours for the flow containing five cylinders.

8. Conclusions

The immersed interface method shares the same mathematical formulation and therefore the advantage of
Peskin’s immersed boundary method. With the appropriate inclusion of jump conditions in finite difference
schemes, the immersed interface method as described here can achieve higher order accuracy, maintain a sharp
interface and preserve volumes. Specifically, our numerical tests show that second-order spatial accuracy in
terms of the infinity norm for both the velocity and the pressure can be achieved. Because of the use of a fixed
Cartesian grid, the method is simple and efficient for flows with moving objects. The cost to treat an object is
of order OðNmÞ, where Nm is the number of Lagrangian points in the object representation. The method can be
applied equally well to objects with prescribed force or objects with prescribed motion. In the current imple-
mentation of the method, we choose to employ uniform grids and FFT Poisson solvers, but the method is
amenable to nonuniform grids and other Poisson solvers.

We are now implementing the method in 3D with the jump conditions that have been presented in [38].
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